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I. Phys. A Math Gen. 26 (1993) 417-4034, printed in lhe UK 

Statistics of q-oscillators, quons and relations to fractional 
statistics 

M Chaichiant, R Gonzalez Felipets and C Montonent 
t High Energy Physics Laboratory, kpamnent of Physics, 
PO Box 9 (Siltavuorenpenger 20 C), SF-OW14 University of Helsinki, Finland 
$ Deparlment of Theoretical Physics, PO Box 9 (Sillavuorenpenpr 20 C). SF-MH)14 University 
of Helsinki, Finland 

W i v e d  28 April 1993 

Abstract. The stati~tics of q-oscillators, quons, and, to some extent, of anyons are studied 
and the basic differences among these objects are pinled our In particular. lhe statistical 
disoibulions for different bosonic and fermionic q-oscillators are found for their corresponding 
Fock space representations in lhe m e  when the Hamiltonian is identified with !he number 
operator. In lhis m e  ,and for non-relativistic particles. the single-particle temperature Green 
function is defined with q-deformed periodicity conditions. The equations of State for non- 
relativistic and ulmlativistic bosonic q-gases in an arbitrary space dimension are found near 
Eose slalistics, as well as that for an anyonic gas near Bose and Fermi statistics. The first 
corrections to the second virial coefficients are also evaluaed. 

1. Introduction 

In the last few years there has been increasing interest in particles obeying statistics different 
from Bose or Fermi. The observation in 1953 by Green [ I ]  that different kinds of statistics 
are allowed within the context of quantum field theory (am) has stimulated an extensive 
study of the so-called para-Bose and para-Fermi statistical fields [2]. The commutation 
relations for these fields are bilinear in the creation and annihilation operators and are 
characterized by an integer p ,  the order of the para-statistics, which corresponds to the 
number of particles in a given symmetric or antisymmetric state. (If p = 1, one recovers 
the usual Bose and Fermi statistics). The case when p is not an integer has been recently 
also studied [3] in order to provide theories in which the Pauli exclusion principle and/or 
Bose statistics can be slightly violated. However, the corresponding Qms, which describe 
such particles, tum out to have negative norm states and consequently are not physically 
acceptable. More recently, another possibility has been explored, which corresponds to 
the case where no assumption is made about the parameter p [MI. The particles which 
obey this type of statistics are called ‘quons’ and the statistics is referred to as ‘infinite 
statistics’. They can be realized by different commutation relations like the ones of q- 
deformed algebras. 

On the other hand, quantum groups [7] are a subject of great activity at present and 
although their direct physical interpretation is still lacking, it is of particular importance to 
study the possible physical implications of these deformations. These structures which first 
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emerged in connection with the quantum inverse scattering theory [ 8 ]  and solvable statistical 
mechanical models [9], have found recent important applications in many problems of 
physical and mathematical interest, such as rational conformal field theories [IO], non- 
commutative geometry [ I l l ,  knot theory [IZ]. quantum superalgebras [I31 and so on. 
The concept of q-deformed oscillators (the so-called q-oscillators), [I41 derived from the 
contraction of quantum algebra [13]. has also been introduced. These q-oscillators can 
formally be defined in any space dimension but then they violate the fundamental axioms of 
QFI‘ in terms of the relation between spin and statistics. In two dimensions, however, a new 
kind of statistics interpolating between bosons and fermions can (without violating any of 
the axioms) exist, due to the appearance of the braid group instead of the permutation group 
when identical particles are exchanged. The particles which obey such so-called fractional 
statistics are called anyons [15]. Such particles have attracted considerable interest since 
they appear in realistic systems and, in particular, are connected with the interpretation of the 
fractional quantum Hall effect [I61 and may have relevance in other quasi-two-dimensional 
systems such as high-T, superconductors [ 171. 

Since anyons are two-dimensional particles that acquire a phase upon circling each other 
and returning to their original configuration, their wavefunctions as well as the operators that 
create or annihilate them must be multi-valuated functions of position. This fact makes the 
construction of such operators rather involved. This problem was originally studied for field 
theories in the continuum 118, 191 but there the precise definition of multi-valued operators 
encounters severe difficulties. The same problem, however, has been lately examined for 
field theories on a lattice [ZO,  211. where the multi-valued anyon operators can be indeed 
rigorously defined. 

In this paper we study the interrelation between the statistics of q-oscillators, quons 
and, partially, of anyons. At the same time we point out the basic differences between 
the statistics of the above-mentioned objects. Along these lines we hope to be able to use 
the techniques further, such as the Green function method developed here, the Fock space 
representation, etc. for the q-oscillators, in the case of fractional statistics. 

In section 2, the q-deformed bosonic and fermionic oscillators are defined and their 
Fock space representations are given for different forms of their commutation relations. 
We emphasize the basic differences between q-oscillators, quons and anyons in general. 
Section 3 is devoted to the study of the statistics of q-oscillators. In particular, the 
statistical ‘distributions’ for q-bosons and q-fermions are found in the case when the 
Hamiltonian of the system is identified with the number operator. Comments on the results 
previously obtained in the literature are presented. In section 4 the q-deformed single 
particle temperature Green function is defined and its ‘periodicity’ properties are studied 
in order to get an appropriate Fourier decomposition in the Euclidean ‘time’ variable and 
find the corresponding frequency values. The method for evaluating frequency sums is also 
discussed and in particular, is used to calculate the statistical ‘distribution’ for q-particles. 
In section 5 we consider an ideal q-gas described by a general non-interacting Hamiltonian 
and find perturbatively the equation of state near Bose statistics in different cases, namely, 
non-relativistic and ultrarelativistic q-boson gas in an arbitrary space dimension. The low- 
density regime is also considered to find the vinal expansion and the corrections to the 
second vinal coefficient. Section 6 is devoted to the study of a gas of anyons near Bose 
and Fermi statistics. We find perturbatively, in the first order of the statistics determining 
parameter, the equation of state of the anyonic gas by means of the temperature Green 
function approach. Finally, concluding remarks and directions for further studies are given 
in section 7. 

M Chaichian et a1 
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2. q-oscillator algebras 

In this section we shall review briefly the definition of q-deformed bosonic and fermionic 
oscillators and their Fock space representations. As in the classical case, the q-oscillators 
can be obtained from the SU(2),  algebra by a contraction procedure [13]. 

We start by defining the q-bosonic oscillator algebra through the commutation 
relations [ 14, 131 

aa+ - qa+a = q-N [ N , a ] = - a  [ N , a + ] = u +  (2.1) 

where q E C: a,a+ and N are the annihilation, creation and number operators 
respectively. One can construct the representation of (2.1) in the Fock space spanned 
by the orthonormalized eigenstates In) of the operator N 

In) = - (a+)" 10) a10) = 0 ~ l n )  = nln) (2.2) m 
where In]! = [n l[n  - I] , . , [ I ] ,  [O]! = 1 and [n] denotes 

In this Fock space it is easy to prove that the following relations hold 

a+a = [ N I  au+ = [N + 1 1 .  (2.4) 

It is interesting to note that if q = e*'*/'", then [ m ]  = 0 (see definition (2.3)). Consequently, 
the Fock space breaks up  into m-dimensional subspaces not connected by the operators U 

and a+. Each subspace carries an mdimensional representation of the algebra (2.1) and can 
be considered separately. (An example is given below, equation (3.6).) A corresponding 
phenomenon happens whenever q = exp(irn), where r is rational, and different from an 
integer. 

These exist different forms of relations (2.1). In particular, when q is real, it is possible 
to define the operators [22] 

(2.5) + - + N I 2  A = qNI2a A - a q  

which satisfy the commutation relation 

AA' -q2A+A = 1 .  (2.6) 

In terms of the new operators (2.5), the Fock representation (2.2) reads as 

In) = - (A+)" IO) AIO) = 0 N l n )  = nln) m 
where 

92" - 1 
42-  1 

B - n - l  [ n ]  = q  In] = - 
( B  standing for bosons). Finally in this Fock space we have 

A+A = [ N I B  AA+ = [ N  + 11'. 
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One can also express (2.1) in terms of the usual undeformed Bose operators b ,  b+ by means 
of the change [22] 

(2.10) 

Then we obtain [b,  b+] = I ,  [ N ,  b] = -b, [ N .  b+] = b+, N = b'b, i.e. the usual bosonic 
oscillator algebra. 

Let us now introduce the fermionic q-oscillator algebra. The annihilation and creation 
operators of the fermionic q-oscillator f ,  f +  are postulated to satisfy the commutation 
relations [23] 

f f + + q f + f  =CN [ N , f l = - f  [ N , f + I = f +  (2. I I )  

where N is the q-fermion number operator. The orthononnalized eigenstates of N are 
defined by 

where 

(2.12) 

(2.13) 

and we have 

f ' f  = [ N I f  f f + = [ N + I I f .  (2.14) 

For generic q, this representation is infinitedimensional. Like in the q-bosonic case, for 
special values of q the Fock space breaks up into disjoint subspaces each carrying a finite- 
dimensional representation of (2.11). If, in particular q = efinIm, we have [2m]f = 0 
for m odd, whereas for m = 4k, [mlf = 0 and for m = 4k + 2.  k 1 [m/2]f  = 0; 
the dimensions of the disjoint subspaces being the smallest integer n for which [n] f  = 0. 
(The cases q = are special, with e.g. [ n ] f  -i-("+')n; they thus give infinite- 

dimensional representations). For q = I the Fock space breaks up into two-dimensional 
subspaces, and the Pauli exclusion principle follows from f z  = ( f + ) 2  = 0. 

q-1 

Let us now introduce the modified operators 

F = q N / 2  f F+ = f +qN/Z (2.15) 

for q real, which satisfy the commutation relation 

F F C + q Z F + F = l .  (2.16) 

Using (2.12) one can build the Fock space representation in terms of these new operators. 
We obtain 

In) = - (F+)" 10) FJO) = 0 Nln) = nln) m (2.17) 

with 

F -  n-I I - (-l)"q" 
[n] = q  [ n ] f  = 

q 2 + 1  ' 
(2.18) 
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It is worthwhile remarking that in the case of fermionic q-oscillators defined through the 
commutation relations (2.1 1). there does not exist achange of operators, analogous to (2.10). 
which would allow us to express these oscillators in terms of the usual (undeformed) Fermi 
ones. One can use instead another definition for fermionic q-oscillators [13], namely 

cc+ + qc+c = Q M  [ M .  c] = -c [ M ,  C+l = c+ . (2.19) 

In this case the change of operators 

c = q-M/2C c+ = c+q-M/Z (2.20) 

cc+ + c+c = I 

would lead to the usual Fermi commutation relations 

and consequently, the only non-vanishing eigenstates of the number operator M are IO) and 
11) = C+IO). (Notice that this conclusion derived from (2.19) is equivalent to the relations 
C2 = C+' = 0 and thus, there is no need to assume them). This means that fermionic 
q-oscillators defined by the algebra (2.19) have only the trivial (undeformed) Fock space 
representation and thus behave as usual fermions. 

To conclude this section, some remarks about systems with several degrees of freedom 
are in order. In the case of bosonic and fermionic q-oscillator algebras (2.1). (2.5) and 
(2.1 I), (2.15) respectively, the multimode generalization is straightforward. For q-bosons 
we have the commutation relations 

aiaT - ((4 - + 1)aTai = 6ijq-NT [Ni,aj]=-&ijaj [N;,aT] =&.a+ Cl j 

(2.21) 

(2.22) 
Ai AT - ((4' - l)Sjj + l)AfAi = 6;j I N i ,  A j ]  = -SjjAj [ N i ,  Af]  = 8ijAt 

while for q-fermions they read as 

hf)+ + ((4 - 1)Sij + l)f?fi = 6 ; j q - N '  [Ni, f i l  = - s ; j f i  [Ni, &+I =%i f :  

(2.23) 

FiF? + ((q2 - 1)A;j + l)F,+F; =6ij  [ N ; ,  F,] = -6..F. (I J [Ni, F:1 = SijF:.  

(2.24) 

Recently, an altemative deformed commutation relation, called quon algebra, has been 
considered [4, 51. It is defined by 

(2.25) 

and interpolates between Bose and Fermi algebras as q goes from 1 to - 1 on the real axis. 
However, let us note that there exists a distinct difference between the q-oscillators defined in 
(2.22). (2.24) and the quons. In fact, in the case of bosonic (fermionic) q-oscillators different 
modes ( i  # j )  commute (anti-commute), while quons 'q-mute' i.e. they satisfy the relation 
given in (2.25). Moreover, in the case of quon algebra no commutation rule can be imposed 
on aa and a+a+. In effect, relations such as aiaj -qajai = 0 or a+aT -qaTaF = 0 would 
hold only when q2 = 1, i.e. only in the Bose and Fermi cases. 

As far as anyons are concemed, their braiding properties make the construction of an 
oscillator algebra a difficult and still unsolved problem. In a recent paper the construction 

a;aj + - qa7ai = & j  
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of anyonic oscillators on a lattice as well as their relation with quantum groups have been 
studied [21]. We will not discuss them further here, but it is worthwhile to stress that q-  
oscillators and anyonic oscillators differ substantially from each other. First of all, anyons 
arise only in two dimensions, while q-oscillators can be defined in any space dimension. 
Secondly, as we shall see in section 4, the q-oscillators can be interpreted as the Fourier 
components of local field operators, whereas anyons are non-local objects as a consequence 
of their braiding properties and the essential differences in their commutation relations. 

3. q-deformed statistics 

In order to study the properties of q-oscillators, let us consider now the statistical averages 
and calculate the deformed 'distributions' which follow from the q-algebras defined in the 
previous section. 

As is well known the thermodynamic properties are determined by the partition function 
Z ,  which in the canonical ensemble is defined by 

2 = Tr(e-P") (3.1) 

where f i  = I / ( k T ) ,  H is the Hamiltonian and the trace must be taken over a complete set 
of states. For any operator 0, the ensemble average is then obtained with the prescription 

1 
Z 

(0) = -Tr(e-BHO) 

and it is crucial that the cyclicity of the trace be consistent with the algebraic sbucture. 
which is the case for the deformed algebras considered in this paper. In the remainder of this 
section we restrict ourselves to systems described by a single oscillator mode. Multimode 
systems are treated in sections 4 and 5. 

Two types of Hamiltonians are usually dealt with in the literature. The first one is 
identified with the number operator and reads as [4, 61 

H = O N  

(hereafter h = l) ,  while the second one is defined in terms of the creation and annihilation 
operators. following the classical realization of the harmonic oscillator [24] 

H = $w(a+a + a a f ) .  

H = !p(f+f - ff'). 

(3.3) 

For the q-fermion oscillator the latter can be taken as 

(3.4) 

In section 5 we shall generalize (3.3) to a general linear combination of a+a and aac. 
The partition function, and hence the thermodynamics of the system, is determined 

uniquely by the spectrum of the Hamiltonian. With the choice (3.2), the partition function 
will be that of the harmonic oscillator 

irrespective of which deformation, Bose or Fermi, we want to choose. Of course, for those 
special values of 9 for which the Fock space separates into disjoint subspaces each carrying 
a finite-dimensional representation, it is perhaps physically more meaningful to consider the 
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truncation to one of these subspaces only; i.e. picking only those terms in the sum (3.5) 
corresponding to the subspace chosen. As an example, when 9 = einf3, the Fock space 
States 13), 14). 15) span a representation R of (2.1) in which 

O i  0 0 0 0  3 0 0  
u . = ( O  0 0 0  0 i )  u i = ( i  O i  0 0 )  0 N . Q = ( O  0 0 5  4 0 )  (3.6) 

(note that U+ is not the conjugate of a in this representation). The corresponding tfuncated 
partition function is 

ZR = .-3#0 + e-4#0 + ,-S@@J (3.7) 

Summing over all subspaces reproduces the full partition function (3.5). 
While the thermodynamics for a system with Hamiltonian (3.2) is independent of the 

deformation, Green functions like @+a) will depend on the deformation. For the q-bosonic 
algebra (2.1) we obtain 

while for the operators (2.5) obeying (2.6) we have the simple expression 

1 
( A + A )  = ( [ N I B )  = - 42 . (3.9) 

(f'f) = ([NI') = e2,90 + (q - 9-')e,9" - 1 

Similarly, for the q-fermion algebm (2.1 1) and (216) we obtain 

(3.10) 
& - I  

and 

(3.11) 
1 

(F+F)  = ( [ N I F )  = 
+ 92 . 

The average of N is of course always given by the usual Bose-Einstein formula 

(3.12) 
1 

n = ( N )  = - 
e p w -  I 

(when the average is taken over the complete Fock space), to which (3.8) and (3.9) reduce 
in the case q = 1, and (3.11) in the case 9 = hi, as they should. When 9 = 1 in (3.10) or 
(3.1 1). the Fermi-Dim distribution is recovered. 

When 9 # I ,  the temperature Green functions (a+a), etc, do not have a direct relation 
to the thermodynamic quantities of the system. In a multimode context, such as will be 
considered in section 4 and 5, this can be understood by noting that the average (a:ar) 
does not describe the average occupancy of the kth level, ( N x ) .  

When the Hamiltonian is chosen as in (3.3) or (3.4), the partition function can no longer 
be computed in closed form for generic q.  This case has been investigated in [24-261. 

4. Temperature Green function approach 

In this section we shall define the single-particle temperature Green function for q-particles 
satisfying the algebras (2.6) or (2.16). This would mean that the fundamental field operators 
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of the theory are the ones connected to the operators appearing in (2.6) and (2.16) (see 
(4.4)). In the case of the algebras (2.1) and (2.11) the construction of this function is a 
more complicated task due to the nonlinearity of the commutation relations with respect 
to the annihilation and creation operators, which makes it less obvious how to define the 
Green function. 

Let us start by defining the single-particle Green function as 

G,,&. 7;  z'. r') = -(Tq+dz, r)++i%'. 7 ' ) )  (4.1) 

where the ordering operator T, orders the operators according to their values of r 

$(x. r)++(z'. 7 3  I q++(z', r')+(z, T) 

if 7 z T' 

if 7 c r' 
(4.2) 

In this section in order to simplify the notation and consider both q-bosonic algebra (2.6) and 
q-fermionic algebra (2.16) simultaneously, we shall use q instead of *92. Note that when 
9 = I (q = -1) equations (4.1) and (4.2) are the usual definitions for bosons (fermions). 
The indices a and fl  label the components of the field operators and in what follows they 
will be omitted. Finally, the operators +(z, r )  and ++(z, T) are the Heisenberg operators, 
related to the Schradinger ones +(E) and ++(.f) through the relations 

Tp($(=, r)++@'. 5')) = 

+(z, T )  = eHr+(i)e-Hr ++(E, r )  = eHr++(z)e-". (4.3) 

As a simple example, we shall compute the Green function for a spin-zero non-interacting 
system. In this case the states are plane waves so that 

(4.4) 

and the operators A t ,  A: are supposed to satisfy the q-oscillator algebra 

AtA: - qA:At = 1 [Nj, Ak] = -&A&, [ M i ,  A:] =&A:. (4.5) 

The free Hamiltonian will be taken as 

so that the following commutation relations hold 

[H, A t 1  -En& [H, A:] =€&A:. 

The Heisenberg field operators (4.3) are then 

(4.7) 

Now, from the definition of the Green function (4.1) and using (4.8) we have 
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The last equality in (4.9) follows from the orthogonality of states with different occupation 
numbers Ink]. For the ensemble averages we have according to (3.9) 

(4.10) 

and from (4.5) 

(4.11) esft 
4 &a - 

Let us now turn our attention to the 'periodicity' properties of the Green function (4.1) in 
the domain where 0 < r < 8, 0 < T' < 8. Keeping T' fixed, then 

(AkA;)  = 1 + q(A:Ax)  = - . 

4 
Z 

z 

z 

G(x, 0 x', r') = - - Tr(e-@H+f(z', T')+(x, 0)) 

= - Tr(+(s, O)e-BH++(z', 5')) 

= - zTr(e-BH+(z, fl)++(z', 5')) 

= q G ( X ,  8; X', T I ) .  

Similarly 
(4.1Zn) 

G(X, T ;  XI, 8) = qG(Z, 5 ;  0'. 0). (4.12b) 
Since the Hamiltonian is time-independent, G depends only on the difference r - 5' and 
equations (4.12) may be written as 

G(X,X'; T - T ' < o ) = q G ( Z , Z ' ;  T - T ' + @ ) .  (4.13) 
Note that when q = 1 ( q  = -1). G is periodic (anti-periodic) with period f3 in the range 
0 6 5, 5' 4 8, which corresponds to the usual bosonic (fermionic) case. 

Now the next step is to obtain an appropriate Fourier decomposition in the variable 
r for the Green function satisfying the boundary conditions (4.13). For this purpose, we 
introduce a new function 

(4.14) 

which according to (4.13). is periodic in r variable with period 8. Thus this function can 
be expanded in a Fourier series 

g(r, z', r )  = q"BG(z, z', T) 

where on = 2na/p. The associated Fourier coefficient is then given by 
B 

g(Z,X',O,) = /"dTe""'g(a,X',T). 
0 

Equations (4.15) and (4.16) can be written in terms of G 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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where 

(4.19) 

When 4 = I (4 = -1). then kq = 2nrr/p (k4 = (2n + l)rr/p). i.e. we have the common 
expressions for the bosonic (fennionic) frequencies. 

i 
B 

k ,=2nx l@-- Inq .  

For the non-interacting Green function (4.9) we have then 

go(x - z', ka) = dreh rGo(z  - x'. r)  J! 0 

(4.20) 

The condition (4.19) and equation (4.1 1) imply that the expression in brackets {. . .) in (4.20) 
is equal to 1 and consequently, we have 

or after performing the Fourier decomposition in the space variables 

(4.21) 

We see that the free q-propagator has the usual form with the only difference that now the 
frequencies are given by (4.19). 

To conclude this section let us discuss the method for evaluating frequency sums 
appearing in the calculation of statistical averages. Suppose that for a function F ( .  . . , k4)  

we want to evaluate the sum (I/p) E, F ( .  . . , k 4 ) .  By choosing a function having poles at 
the values z = kq and with unit residue we can reduce the summation over kq to evaluation 
of a contour integral. One possible choice are the functions 

Then we have 
1 I - F ( .  . . , k4)  = -- 
8 ,  p i  

f,'(zj) Res F ( .  . . ,z,) (4.23) 

where zj are the poles of F in the complex plane dehned by the variable z = k4.  Let us 
remark also that the choice of f,' or f; is determined by the requirement that the integral 
$ f F dz should converge on the circumference of an infinite-radius circle in the complex 
plane. 

As an example of the use of formula (4.23), let us calculate again the thermal average 
(A:Ak)  but this time by means of the Green function. 
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From the definition (4.1) and the expansions (4.8). it is easy to show that 

(4.24) 

where E z 0. (The factor eibf is a convergence factor and therefore E must be kept until 
the sum is evaluated). Using the formula (4.23) with the function fq- defined in (4.22). we 
get 

i.e. we reproduce the same result obtained in the previous section (see (3.9) and (3.11)) 
from statistical mechanics. 

To develop an analogous Green function method for anyonic fields is of considerable 
interest. This question is under study. 

5. The ideal q-gas 

By an 'ideal q-gas' we understand a system defined by the Hamiltonian 

H = E€; ((Y a:ai + ( 1  - a )  UiU,?) (5.1) 

where the operators ai, a: satisfy the q-oscillator algebra (2.21). and (Y is a real parameter 
between 0 and 1. An equivalent form of the Hamiltonian can be written using (2.4): 

H = CE;  nil + (1 - a ) [ N i  + 11). (5.2) 

We shall interpret a;, a:. Ni as annihilation, creation and occupation number operators, 
respectively, of particles in the state (level) i, although the mathematical results are, of 
course, independent of this interpretation. We shall call E; the energy of the level i .  The 
ideal q-gas is a special case of a general class of systems, which could be called 'general 
ideal gases'. The energy eigenvalues of such a system are uniquely determined by a set of 
occupation numbers (n i l  and a set of functions Ei: 

E = Ej(ni) 
i 

(5.3) 

In a usual ideal gas. the functions E; are proportional to the occupation number: 

E;(n)  = e,% (5.4) 
corresponding to the physical interpretation of the total energy as a sum of single-particle 
energies E ; ,  with vanishing interaction energy between the particles. In the general case 
(5.3) the interaction between the particles is such that it causes the energy of the ith level 
to depend on the occupancy of that level. For the ideal q-gas (5.2). this dependence is for 
real q = expr 

E' 
E i (n)  = +(a sinh(nt) + (1 - a)sinh ((n + I)!)) 15.5) sink 

and for q = exp(i6') 
€. 

= +(a sin(n6') + (1 -a)  sin((n + 116')). (5.6) sin 0 
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(In an interpretation, where a;, a: and Ni are the ladder operators and excitation levels of 
oscillators, (5.5) and (5.6) correspond to a certain type of nonlinear oscillator 1251). 

The grand canonical partition function 

Z = Trexp(-B(H - p N ) )  = exp(-pQ) (5.7) 

where N is the total number operator 

N =CNi (5.8) 

p the corresponding chemical potential, and C2 the grand canonical potential, factorizes for 
a general ideal gas into a product of single level partition functions 

z = n Z l ( i .  B, p) (5.9) 

Correspondingly, the grand canonical potential is given as a sum over the levels i 

(5.10) 

(5.11) 

The allowed values of the chemical potential p are determined by the requirement that the 
sum in (5.10) converges. For the ideal q-gas with real q,  the absolute value of E; grows 
exponentially with n, equation (5.5). In order to have the total energy bounded from below, 
we require E; 2 0 for all i in (5.5). Then w can take any real value if all E( 0, if at least 
one E; = 0, we must have /L e 0. When q is a pure phase, IE;(n)l stays bounded for all n 
in (equation (5.6)). in this case we require p e 0. 

The sum over n in (5.10) cannot be explicitly performed in general. However, when 
q = expt is close to 1 (f + 0), we can calculate the leading correction to the usual Bose 
gas. To order tZ ,  equation (5.5) reads 

Ei = ~ i ( n  + 1 -a + &(n + l)(n + 2 - 3a)tz + . . .) . (5.12) 

Substituting this into (5.10) gives the approximate expression 

Introducing the variable xi =  BE^ and the fugacity z = exp(,¶p) and performing the sum 
over n we obtain 

Zr(x;, Z) ~ e ' " - " ~ ~ ~ o ( z , ~ i ) ( ~  - f 2 ~ ; ~ e - ' ~ ~ 0 3 ( z , x i ) ( a ~ e - x '  + 1 -a)) 

where 

(5.14) 

1 
1 - ze-X 

ZO(Z, x )  = 

corresponds to the ideal Bose gas. The grand canonical potential is then to second order 
in t 

BQ-C(~ - a ) x i  -Clogzo(z,xi) ttZzCx;e-x'Z~(z,xi)(cuze-"+ I -a). (5.15) 
i i i 
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In order to study the thermodynamics of the system we have to specify the energies €1 

and the density of states. We shall consider a system where the states i are specified by 
a d-dimensional momentum vector k (the momentum of the q-boson). The energy of the 
9-boson is given by the dispersion law 

E; = ~ ( k )  = ylkIp (5.16) 

covering the cases of non-relativistic ( y  = 1 /2m, p = 2) and ultrarelativistic (y = 1, 
p = 1) q-bosons. We enclose the system in a large d-dimensional volume V and replace 
in the usual way the sum over levels by an integral over k-space: 

The first term on the right-hand side of (5.15) is now divergent, giving rise to an infinite 
(negative) vacuum pressure, and we renormalize it away by simply dropping it. This means 
in effect that we subtract away the vacuum energy, i.e. replace the functions Ei(n) by 
Ei(n) - Ej(0). 

Performing the k-space integrals using the general formula 
m y - 1  e -pr - r(a) 2 (k  + n - I)! 21 dx -- 

(eqx - z)" (n - l)! k=D k !  (9k + qn + p)" 

and introducing the functions ge(z) 

we get for the pressure p = -Sa/ V 

Here 

where Ad-t is the area of the unit sphere Sd-' 

&d/z  

r(dI2) ' 
Ad-1 = - 

The g-boson density 

is easily found, since 

We get 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 
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According to our general considerations, the chemical potential is restricted to negative 
values for the system we consider. 

Since 

gdz)  > g c 4 )  

when L < L' and z -+ 1, equation (5.19) implies that the pressure becomes negative for /L 
sufficiently close to 0 (z sufficiently close to 1) if t is real. This is not a signal of instability 
of the ideal q-gas; rather it signals the breakdown of the expansion in t. From (5.13) it is 
clear that the effective expansion parameter is t2  times a positive power of Z&, x i ) .  and 
this grows large when z --f I and xi + 0. Although the problem of negative pressure is 
absent for imaginary t ,  also in this case the expansion cannot be trusted as z -+ 1. Thus 
we are not able to address the interesting question how the phenomenon of BowEinstein 
condensation is affected by the deformation. 

For low densities, however, the expansion in t2 is meaningful. We invert equation (5.22) 
to obIain z as a series in n: 

2 

z = a, (:) +. . (5.23) 

where 

Substituting (5.23) into (5.19) and expanding in powers of n, we obtain the vinal expansion 
of the equation of state 

B p = n ( l + B n + . . . )  . (5.24) 

The second vinal coefficient is given by 

(5.25) 

Thus, for very low densities, the q-gas behaves as a classical ideal gas. The expression 
for the second vinal coefficient is independent of the parameter OL in the Hamiltonian, and 
shows that the deformation weakens the attraction between pairs of q-bosons producing an 
increase in the pressure, when r is real, whereas the effect of the deformation is the opposite, 
when is imaginaly. 

Our results in this section generalize previous partial results obtained e.g. in [24] 
and [El. The papers in [27] address the same questions as we have done in this section 
using the retarded and advanced Green functions. Their results, where both the chemical 
potential p and the particle number N enter into the average distribution number and have 
sharp values simultaneously, are meaningless and thus they are erroneous. 

6. Anyonic gas near Bose and Fermi statistics 

Some of the statistical properties of the anyonic gas have been studied in certain 
approximations [28, 291. In this section we will find perturbatively (in the first order 
of the statistical parameter) the equation of state for a gas of anyons near Bose and Fermi 
statistics by using instead the temperature Green function method. The same results have 
been obtained in [29] in a different approach. 
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We consider a system of N identical anyons described by the Hamiltonian U51 

where 

k x ~ i j  
(Tij 'E Ti - T j )  

is the statistical gauge field, k is a unit vector perpendicular to the plane and a = e&/n is 
the statistical parameter (e and @ are the charge and the flux carried by each anyon). 

Due to the singular az-interaction term in (6.1). the standard perturbation treatment 
requires a redefinition of the N-body anyonic wavefunction, so that the latter vanishes 
when any two anyons approach each other [29]. Therefore, the real wavefunction is defined 
as 

For the new function $+, the Hamiltonian reads as 

and consequently, the singular terms diverging like l / r$  are cancelled. Now the perturbative 
analysis can be carried out. At order a, only the term proportional to 1.1 in (6.3) contributes 
to the grand partition function. Indeed, the contribution of the second term proportional 
to a can be shown to vanish due to the symmetry of the free spectrum under the change 
px c) p y  (i.e. the corrections to the spectrum coming from the a interaction cancel in the 
order a in the grand partition function). Furthermon, the la1 interaction term in (6.3) can 
be replaced (in a perturbative sense) by a sum of two-body &potentials [29] 

This fact will allow us to simplify the calculations of the self-energy corrections. 

satisfies the Dyson equation, which in the momentum space has the form [30] 
Let us consider now the statistics. As is well known the temperature Green function 

(6.5) G ( k , o n )  = G"(k. on) + G"(k, w.)Z(k, o , )C(k ,  on) 

where C is the proper self-energy and Go is the free propagator 

on = b x / B  (on = (2n + I)x/B) for bosons (fermions), 6; = k2/(2m) and 1.1 is the 
chemical potential. Equation (6.5) has the explicit solution 
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The first-order self-energy is easily evaluated and is given by [30] 

where the upper (lower) sign corresponds to bosons (fermions) 

(6.9) 
1 

no - k - eBlf;-rl 1 

is the usual Bose (Fermi) distribution and V is the two-particle interaction potential. 
According to (6.4). for anyons we have 

(6.10) 2n 
m 

V(k)  = -[a1 

and therefore & j l  is easily evaluated. Finally we obtain for bosons 

(6.11) 

while for fermions 

Zc,:,=O. (6.12) 

We conclude that there are no corrections of order a to the thermodynamical quantities of 
the anyonic gas near Fermi statistics. 

Since Z:) is independent of w,,, the particle distribution will be given by the same 
expression as the unperturbed one (6.9) with the only difference that instead of the free 
energy 6;. we will have 6; + E&. Besides, in the approximation we are dealing with (first 
order in (I), E& is also independent of k and thus, the density of particles is easily found 

where h = m. 
Substituting (6.1 I )  into the latter equation, we obtain 

For the pressure p ,  in tun,  we find 

(6.13) 

(6.14) 

Equations (6.13) and (6.14) were found in 1291 by following a different procedure. These 
equations can be rewritten in terms of the functions g&) defined in (SH18). We have then 

(6.15) 
1 

f l  = p l ( z ) ( l  - 2Ialgo(z)) 



Sratistics of q-oscillators 4033 

(6.16) 

Expanding p in powers of n we get the following expression for the second vinal coefficient 

(6.17) 

This expression shows that E exhibits a non-analytic behaviour (a cusp at a = 0) as a 
function of the statistics determining parameter a. 

Comparing equations (5.19). (5.22) and (5.25) for the two-dimensional non-relativistic 
9-gas with (6.15). (6.16) and (6.17) for the anyonic gas, we notice that they differ from each 
other and consequently, one sees explicitly that these two objects indeed describe different 
physical systems. 

7. Conclusions 

In this paper we have studied some statistical properties of q-oscillators, quons and anyons 
in order to shed some light on the interrelation as well as on the basic differences between 
these objects. In particular, the statistics of bosonic and fermionic q-oscillators have been 
considered in detail for different Fock space representations of the corresponding algebras 
in the case when the Hamiltonian is identified with the number operator. The choice of 
this Hamiltonian allowed us to calculate the statistical averages and also to introduce the 
Heisenberg picture of operators. The Green function method has been also introduced for 
non-relativistic q-particles by assuming that Green function satisfies q-deformed periodicity 
conditions. This general method is hoped to be employed in attacking the problem of 
formulating the statistics of an anyonic gas. 
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